PROGRAMA

INSTITUTO TÉCNICO Y ORIENTADO LUIS MANUEL ROBLES

ESPACIO CURRICULAR: FÍSICA

HORAS CATEDRA: 4

CICLO LECTIVO AÑO: 2019

CICLO: C.S.M.T.P

CURSO: 4º SECCIÓN: "C"

PROFESOR: CHIARETTA, Carlos

OBJETIVOS GENERALES

- Interpretar los efectos y las leyes relacionadas con las cargas eléctricas y analizar sus diferentes aplicaciones.
- Comprender y analizar las leyes del electromagnetismo y sus aplicaciones en diferentes aparatos de uso cotidiano.
- Reconocer las características de las ondas y analizar las distintas radiaciones del espectro electromagnético.
- Identificar los distintos tipos de energía y las transformaciones que suceden continuamente en el entorno cotidiano.
- Comprender y analizar las características básicas de los movimientos curvilíneos.

OBJETIVOS ESPECÍFICOS

- Comprender el significado de carga eléctrica y como se carga un cuerpo.
- Interpretar correctamente el 1º y 2º principio de la electrostática y la ley de Coulomb .
- Comprender la existencia del campo eléctrico e interpretar las líneas de campo que lo representan.
- Reconocer al capacitor o condensador como un almacenador de energía eléctrica.
- Comprender la existencia del campo magnético e interpretar las líneas de campo que lo representan.
- Interpretar correctamente la Ley de Faraday y la Ley de Lenz.
- Analizar el funcionamiento de diferentes dispositivos que están presentes en todos los hogares y fábricas que aprovechan la inducción electromagnética.
- Comprender el significado y las características de una onda.
- Diferenciar las ondas que necesitan un medio material para propagarse de las que no lo necesitan.
- Identificar en el espectro electromagnético los diferentes tipos de ondas de acuerdo a su frecuencia o a su longitud de onda.
- Comprender el efecto fotoeléctrico y su aplicación en aparatos electrónicos.
- Distinguir la diferencia entre el concepto físico y el concepto coloquial de trabajo.
- Comprender el concepto de energía, distinguir los diferentes tipos de la misma.
- Interpretar el principio de conservación de la energía y los efectos de las fuerzas no conservativas.
- Reconocer la eficiencia en las transformaciones de energía y la potencia existente en los cambios de energía.
- Saber elegir un sistema de referencia adecuado para describir y analizar el movimiento de los cuerpos.
- Reconocer a la velocidad y a la aceleración como magnitudes vectoriales.
- Resolver problemas de los diferentes movimientos, aplicando las fórmulas correctas y haciendo los pasajes de unidades que fueran necesarios.

CONTENIDOS CONCEPTUALES

Diagnóstico: Magnitudes físicas.

<u>Magnitudes escalares y vectoriales</u>. Diferencia entre magnitudes escalares y vectoriales. Identificación entre varias magnitudes cuales son vectoriales y cuales son escalares. Movimiento. Posición. Sistemas de referencia. Diferencias entre trayectoria y desplazamiento.

Unidad Nº 1: Electrostática.

<u>La carga eléctrica.</u> Interacciones entre cargas eléctricas. <u>Primer principio de la electrostática.</u> <u>Ley de Coulomb.</u> <u>Formas de electrizar un cuerpo</u>: cargas por fricción, por contacto y por inducción. <u>Segundo principio de la electrostática</u>. Conductores y aislantes. <u>Campo eléctrico</u>. <u>Líneas decampo eléctrico</u>. <u>Ley de Gauss</u>. <u>Caja de Faraday</u> y escudo electrostático. <u>Capacitores</u>. Almacenamiento de la energía eléctrica. Capacidad o capacitancia. Dieléctricos.

Unidad Nº 2: Magnetismo e inducción electromagnética.

<u>El magnetismo y los imanes</u>. <u>Campo magnético de un imán</u>. Fuerza magnética: <u>La Ley de Lorenz</u>. La regla de la mano izquierda. La naturaleza del magnetismo. Flujo del campo magnético. Campo inducido por una corriente eléctrica. <u>Ley de Faraday o Ley de la inducción electromagnética</u>. <u>Ley de Lenz</u>. <u>Aplicaciones</u> de la inducción electromagnética: Generadores de corriente alterna; motores eléctricos; transformadores.

Unidad No 3: Ondas y radiaciones.

Ondas mecánicas. <u>Características de una onda</u>: longitud, frecuencia, amplitud y velocidad. Frentes de ondas. Ondas periódicas y no periódicas. Ondas transversales y ondas longitudinales. <u>Radiación electromagnética</u>. <u>Las ondas electromagnéticas</u>. <u>El espectro electromagnético</u>: Ondas de radio y televisión, microondas, infrarrojos, radiación visible, ultravioleta, rayos x y rayos gamma. El efecto fotoeléctrico. La teoría de la luz de Einstein.

Unidad Nº 4: Trabajo y energía.

<u>Trabajo</u>. <u>Concepto de energía</u>. Distintos tipos de energía. <u>Principio de conservación de la energía</u>. <u>Energía cinética</u>. <u>Trabajo y energía cinética</u>. Equivalencia masa-energía. <u>Energías potenciales</u>: Energía potencial gravitatoria y energía potencial elástica. <u>Energía potencial y trabajo</u>. <u>La energía mecánica</u>. <u>Sistemas conservativos y no conservativos</u>. Conservación de la energía mecánica. <u>Transformación y degradación de la energía</u>. Fuerzas no conservativas. <u>Eficiencia de las transformaciones</u>. La potencia. Potencia eléctrica.

Unidad Nº 5: Movimientos curvilíneos.

Principio de la independencia de los movimientos. Independencia de las velocidades Tiro oblicuo. Movimiento circular uniforme. Periodo. Frecuencia. Velocidad lineal o tangencial. Velocidad angular. El Radian. Aceleración centrípeta. Movimiento circular uniformemente variado. Aceleración angular. Aceleración lineal o tangencial.

CRITERIOS DE EVALUACIÓN

Diagnóstica:

- Dominio de conocimientos previos.
- Actitud e interés hacia la asignatura.
- Desarrollo de capacidades y habilidades adquiridas.
- Manejo de vocabulario propio de la asignatura.

Evaluaciones escritas, trabajos prácticos:

- Asimilación, interpretación, análisis, claridad y transferencia de conceptos y contenidos.
- Manejo de vocabulario propio de la asignatura.
- Coherencia y claridad en las respuestas.
- Identificación, explicación, comprensión y análisis de las problemáticas propuestas.
- Prolijidad, legibilidad, redacción y ortografía
- Cumplimiento de consignas
- Capacidad de reflexión y de relación entre contenidos y conceptos
- Capacidad de pensamiento crítico

Evaluaciones orales, exposiciones:

- Asimilación, interpretación, análisis, claridad y transferencia de conceptos y contenidos.
- Manejo de vocabulario propio de la asignatura.
- Coherencia y claridad en las respuestas.
- Correcta expresión.
- Cumplimiento de consignas.
- Capacidad de reflexión y de relación entre contenidos y conceptos
- Elaboración de opinión personal y fundamentación
- Tiempo y dedicación conferido al trabajo
- Calidad de la participación de los diferentes miembros del grupo
- Pertinencia con la bibliografía consultada

Proceso:

- Predisposición, compromiso y participación para con la asignatura.
- Esfuerzo por vencer las dificultades, demostrando interés y dedicación.
- Responsabilidad, respeto e integración.
- Actitud frente a la materia, docente y compañeros
- Cumplimiento de las pautas de trabajo.

REQUISITOS PARA RENDIR EXÁMEN

El examen se basará en los temas trabajados durante el año lectivo. Para rendir se deberá presentar el día fijado con uniforme del colegio y su libreta, con todos los elementos necesarios para realizar el examen.

El alumno deberá rendir la totalidad de la asignatura, sin importar cuál o cuáles trimestres haya o no aprobado.

BIBLIOGRAFÍA

- Fotocopias y apuntes personales que asignara el profesor.
- Libros de consulta:
- FISICA ACTIVA, POLIMODAL (Editorial Puerto de Palos)
- > FISICO –QUIMICA, POLIMODAL (Editorial Puerto de palos)
- > FISICA 2, POLIMODAL (Editorial Santillana)